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Abstract— Recent study in behavioral ecology reveal that
certain species trade-off energy and information during var-
ious routine activities. This paper explores a similar tradeoff
between sensing and motion of mobile agents tasked with target
localization. Specifically, the goal is to balance the quality of
information collected by sensing agents with the kinetic energy
expended by their motion relative to the target. Following
common practice, the determinant of the Fisher Information
Matrix is chosen to represent the information-quality, while
the kinetic energy is quantified by the usual Newton’s laws. We
argue that the quality of information has a form reminiscent
of potential energy, and with such interpretation, we mimic
the basic laws of mechanics by assuming the conservation of
the total energy, which is the sum of the potential energy and
kinetic energy. In this framework, we formulate an optimal
path problem that aims at increasing the information quality
while reducing the kinetic energy along the path of the agents.
To solve this problem, we apply the calculus of variations, only
to discover that the optimal solutions (paths) satisfy the Euler-
Lagrange equations that are well known in classical mechanics.
This realization suggests that the resulting trajectories may
exhibit some well-known phenomena in classical mechanics.
Simulation results support this hypothesis.

I. INTRODUCTION

In robotics research, target localization is an important
research topic with a wide range of civilian and military
applications such as reconnaissance, surveillance, and envi-
ronmental mapping [1], [2]. These applications require the
co-design of sensing and motion of agents that operate in an
environment with large motion disturbances and information
uncertainties [3]–[5]. Mobile sensor networks are routinely
used for such application problems since measurements from
multiple sensors can be combined and filtered to produce
efficient and reliable state estimation [6]–[10].

Energy-information tradeoff is a general principle for
biological mobile sensing. The authors in [11] observe that
when searching for prey, electric fish swim in a less effi-
cient manner in order to achieve a higher encounter rate
for prey. The electric fish is also found to move longer
distance in darkness to track a moving target when the visual
information is absent and the electrosensory information is
degraded [12]. Tradeoffs between information and energy
are also observed in bees. For example, nocturnal bees fly
at lower speeds compared to diurnal bees. However, their
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apposition eyes are 30 times more optically-sensitive than
the eyes of their closest diurnal relatives [13], [14]. Research
on the tradeoffs between speed in decision making and
accuracy in obtaining information in animals are reviewed
in [15]. Decision making speed can be related to the energy
consumption in certain cases.

Inspired by such biological insights, we investigate the
tradeoffs between energy and information of mobile agents
for target localization. Energy consumption in mobile sensor
networks is an important issue that determines the operation
time in real-life applications. The major contributors to ener-
gy consumption include motion, communication, and sensor
information processing. Sensor scheduling and communica-
tion scheduling have been intensively studied in wireless
sensor networks. For mobile sensor networks, motion usually
is the largest user of energy, and hence we focus on balancing
the kinetic energy consumption of the agents and the quality
of information collected by them.

Most existing works on trajectory optimization for target
localization are based on maximizing the information ob-
tained by sensing agents. For example, the Fisher information
matrix (FIM), which describes the amount of information
that the measurements carry about the states of the target,
is widely used as a criteria for performance measure and
trajectory optimization [1], [16]–[21]. In these works, the
speed of the agents is usually assumed to be constant, which
implies constant kinetic energy of the agents. Our approach is
new since instead of just maximizing the information, we aim
at balancing the tradeoffs between information and energy.

Our basic idea is underscored by a realization that the qual-
ity of information, as characterized by the Fisher information
matrix, is akin to a measure of potential energy. The reason
is that the determinant of the FIM only contains spatial (ge-
ometric) information about the agents, not unlike measures
of potential energy in models of mechanical systems. The
objective of this paper is to initiate an exploration of the
balance between high information quality and low kinetic
energy in this setting; we do so by defining an optimal-
path problem whose objective is to minimize the difference
between the agents’ kinetic energy and the potential energy,
which is represented by the inverse of the information-
quality. By viewing the agents as free Newtonian particles
subjected to only the potential forces introduced by potential
functions, the resulting trajectories are known to satisfy the
Euler-Lagrange equations, or the Hamilton equations [22].
Furthermore, borrowing a fundamental idea from classical
mechanics, we assume that the total energy of the system
is conserved along the trajectories of the mobile agents. As
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a first step, we consider two agents tracking one stationary
target, and derive the Hamilton equations for them. We then
present simulation results for various initial conditions.

The rest of the paper is organized as follows. Section
II presents background information on bearings-only target
localization using mobile sensing agents. Section III dis-
cusses the energy-information tradeoffs in target localization
and formulates an optimal control problem. Section IV
introduces the solutions for the trajectories of the agents
derived from Hamilton equations. Section V demonstrates
simulation results, and Section VI concludes the paper.

II. BEARINGS-ONLY TARGET LOCALIZATION

Bearings-only target motion analysis (TMA) is a classical
problem, in which an observer measures noisy bearings
from a target and estimates the position and velocity of
the target [23], [24]. In this section, we formulate the
tracking problem when N agents are deployed to localize
a target using bearings-only measurements and the Fisher
information matrix (FIM) associated with this problem.

A. Tracking Model
Consider a team of N sensing agents that are moving in

a 2D field to localize a target with bearings-only measure-
ments. Denote the position of the target as rT = (rT,x,rT,y),
the position of the ith agent as ri = (ri,x,ri,y), and the cor-
responding bearing measurement as θi, i = 1, · · · ,N. Assume
that both the target and the agents are point masses, which
satisfy ṙT = vT , and ṙi = vi, i = 1, · · · ,N, where vT and vi
are the velocities of the target and the ith agent, respectively.

Fig. 1 illustrates the geometry of two agents tracking a
target, in which di is the distance and θi is the bearing angle
from the ith agent to the target. The bearing angle θi is related
to the relative position between the target and the agent by

θi = arctan
rT,y− ri,y

rT,x− ri,x
. (1)

Define h(s) as h(s) = [θ1, · · · ,θN ]
T , in which s = rT

T =
(rT,x,rT,y)

T is the state vector of the target. Let y be the mea-
surement vector consisting of all the measurements collected
from the N collaborating agents. Then, the measurement
equation for the N sensing agents is

y(t) = h(s(t))+w(t), (2)

where w ∼N (0,R) is assumed to be zero-mean Gaussian
noise with covariance matrix R. Therefore, the measurement
vector y is a normally distributed random vector with mean
h(s) and covariance matrix R, i.e., y∼N (h(s),R).

Fig. 1. Geometry of two agents tracking a target.

B. Fisher Information

The Fisher information matrix (FIM) describes the amount
of information that the measurement y carries about the state
s. It is calculated that, given the measurement equation (2),
the FIM is [3]

I(s) = ∇sh(s)T R−1
∇sh(s). (3)

Define the distance from the target to the ith sensing agent
as di = ‖rT − ri‖. For a stationary target, di = ‖ri‖.

From the measurement equation (2), we derive that

I(s) =
1

σ2
w

(
∑

N
i=1

1
d2

i
sin2

θi −∑
N
i=1

1
2d2

i
sin2θi

−∑
N
i=1

1
2d2

i
sin2θi ∑

N
i=1

1
d2

i
cos2 θi

)
,

(4)

where σ2
w is the strength of the noise covariance matrix R.

That is, R = σ2
wI, in which I is an identity matrix.

The Cramer-Rao lower bound (CRLB) indicates that the
variance of any unbiased estimator is bounded below by
the inverse of the determinant of Fisher information matrix.
As stated in [3], [19]–[21], a configuration of the agents
over the space of all angle positions θi, ∀i ∈ {1, · · · ,N}
is optimal if the configuration maximizes the determinant
of Fisher information matrix, or minimizes the Cramer-Rao
lower bound. The determinant of the FIM can be calculated
as

det(I) =
1

σ2
w

∑
{i,j}

sin2(θi−θj)

d2
i d2

j
, i > j. (5)

For N = 2, the determinant is simplified to

det(I) =
sin2(θ2−θ1)

σ2
wd2

1d2
2

, (6)

indicating that to obtain maximum information in tracking a
target, the two agents should triangulate, i.e., θ2− θ1 → π

2
and move towards the target, i.e., d1,d2→ 0.

III. ENERGY-INFORMATION TRADEOFFS

Target localization requires the co-design of motion and
sensing for mobile sensing agents. We aim at balancing the
information and energy of the agents. In this section, we
introduce the kinetic and potential energy of the system that
two agents are tracking a stationary target and demonstrate
the tradeoffs between information and energy of the tracking
system.

In mechanical systems, the total energy consists of both
kinetic energy and potential energy. The total kinetic energy
of the agents is

E =
1
2

N

∑
i=1

miv2
i , (7)

where vi is the speed and mi is the mass of the ith agent.
Since we consider the angle θi and distance di in the FIM, we
use polar coordinates to present the kinetic energy as well.
Let us consider the case of two agents, as shown in Fig. 1.
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Suppose the agents locates at (0,0). Then, the positions of
the agents becomes

r1,x = d1 cosθ1,

r1,y = d1 sinθ1,

r2,x = d2 cosθ2,

r2,y = d2 cosθ2. (8)

from which we obtain the speed of the agents by taking
derivatives with respect to time,

v2
1 = ṙ2

1,x + ṙ2
1,y = ḋ2

1 +d2
1 θ̇

2
1 ,

v2
2 = ṙ2

2,x + ṙ2
2,y = ḋ2

2 +d2
2 θ̇

2
2 . (9)

Notice that the difference in the bearing angles θ1− θ2
and the distances d1 and d2 between the agents and the target
actually describe a formation maintained by the target and the
two agents. Therefore, we define shape variables (d1,d2,γ),
in which γ = 1

2 (θ1 − θ2), to represent the formation. In
addition, it will be convenient to define the variable φ :=
1
2 (θ1+θ2) to describe the orientation of the formation. Then,
we have γ̇ = 1

2 (θ̇1− θ̇2), φ̇ = 1
2 (θ̇1 + θ̇2), θ1 = γ + φ , and

θ2 = φ−γ . Substitute θ1 and θ2 into equations (9), we obtain

v2
1 = ḋ2

1 +d2
1(γ̇

2 +2γ̇ φ̇ + φ̇
2),

v2
2 = ḋ2

2 +d2
2(φ̇

2−2γ̇ φ̇ + γ̇
2). (10)

Assume that both agents have unit mass, i.e., m1 = m2 = 1.
Then, the total kinetic energy of the two agents is

E = v2
1 + v2

2

=
1
2
(ḋ2

1 + ḋ2
2 +(d2

1 +d2
2)φ̇

2 +2(d2
1 −d2

2)γ̇ φ̇ +(d2
1 +d2

2)γ̇
2).

(11)

For measuring the quality of information collected by the
agents, we choose the determinant of the FIM, as shown in
Equation (6), and aim at maximize the determinant along
the trajectories of agents. Since the determinant of FIM only
contains spatial (geometric) information of the agents, i.e.,
θi and di, it is akin to a measure of potential energy. Denote

VI =
K1d2

1d2
2

sin2(2γ)
, (12)

which is the inverse of the determinant of FIM. And design

VA =
K2

2
(

1
d2

1
+

1
d2

2
), (13)

where K1 and K2 are constants. Then, we define the potential
energy of the system as

V =VI +VA. (14)

Equation (12) indicates that, when the agents are close to
the target, i.e., di → 0, and when γ → π

4 , VI is minimized,
which maximize the determinant of FIM. However, collision
between the agents and the target needs to be avoided.
Therefore, the repelling force VA is introduced since as di→
0, VA → ∞. By defining the kinetic energy E and potential
energy V , the total energy of the system is E +V .

It has been known that when two agents are localizing one
target, the two agents tend to triangulate and move towards
the target as quickly as possible [1], [18] since γ = π

4 and
di = 0, i = 1,2 would maximize the determinant of FIM.
However, if the agents travel with maximum speed all the
time along their trajectories, they consume maximum kinetic
energy during a certain time period. This result agrees with
the observation of the behaviors of electric fish as described
in [11]. When an electric fish consumes more energy during
a certain time period, it obtains more information. However,
in real-world applications of target tracking problem, we
aim to reduce the energy consumed by the agents, which is
represented by the kinetic energy E. Meanwhile, we want to
gather more information during a certain time period, which
is represented by the determinant of FIM denoted by 1

VI
. This

argument indicates a tradeoff between the kinetic energy and
the information collected by the agents.

IV. OPTIMAL TRAJECTORIES OF THE MOBILE AGENTS

In this section, we formulate an optimal path problem to
address the tradeoffs between kinetic energy and potential
energy and provide solutions of the optimal path problem
using Hamilton equations. The following assumption holds
for the rest of the paper.

Assumption 4.1: The mobile agents are assumed to be free
Newtonian particles subjected to only the potential forces
introduced by the potential function V (q(t)).

A. Cost Function

Let q=(q1, · · · ,qn)
T represent the generalized coordinates

for the positions of the agents and q̇ represent the generalized
velocities. Suppose (q, q̇) satisfies q̈ = f (q, q̇,u), where u
represents the total control effort. In the target localization
problem, we define q1 = d1,q2 = d2,q3 = γ , and q4 = φ .
Then, we define an integrated cost function to be

J(q, q̇) =
∫ T

0
(E(q(t), q̇(t))−V (q(t)))dt, (15)

where T denotes a given terminal time. We aim to find
the extrema of the cost function subjecting to some control
forces. Solutions of the optimal control problem provide
optimal trajectories for mobile sensing agents.

Under Assumption 4.1, the dynamic constraint q̈ =
f (q, q̇,u) is not present. In this case, the optimal solution is
known to satisfy the Euler-Lagrange equation, or Hamilton
equation [22]. The total energy of the system H = E +V , in
which H is recognized as the Hamiltonian of the system is
always conserved along the trajectories of the mobile agents.

The cost function (15) indicates that, to obtain the min-
imum of the kinetic energy, V needs to be maximized,
suggesting that the information represented by 1

V , is also
minimized. This fact agrees with the biological inspirations.
However, due to the conservation of the energy, a balance
between the kinetic energy and potential energy should be
found to obtain the optimal trajectories of the agents.
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B. Solutions Derived from the Hamilton Equations
In Hamiltonian mechanics, L(q(t), q̇(t)) = E(q(t), q̇(t))−

V (q(t)) is the Lagrangian of the system. The first order
necessary condition for optimality is the solution of the
Euler-Lagrange equation

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= 0. (16)

The Hamiltonian equations can be derived from the La-
grangian equations in that it translates n second-order dif-
ferential equations describing the motion of a particle into
2n first-order equations, where n is the number of degrees of
freedom of the system [22]. Define the generalized momenta
as p = ∂L

∂ q̇ . The Hamiltonian and the Lagrangian are related
by the Legendre transformation q̇ = h(q,p, t) as follows

H(q,p, t) = pT h(q,p, t)−L(q,h(q,p, t), t), (17)

which produces the Hamilton equations as

ṗ =−∂H
∂q

, q̇ =
∂H
∂p

. (18)

The trajectories of the agents can be obtained by solving the
above two partial differential equations.

In the special case when two agents track a stationary
target, the potential energy is

V (q) =VI(q)+VA(q) =
K1q2

1q2
2

sin2(2q3)
+

K2

2
(

1
q2

1
+

1
q2

2
), (19)

and the kinetic energy is

E(q, q̇)

=
1
2
(q̇2

1 + q̇2
2 +(q2

1 +q2
2)q̇

2
4 +2(q2

1−q2
2)q̇3q̇4 +(q2

1 +q2
2)q̇

2
3).

(20)

Therefore, the cost function can be written as

J(q, q̇) =
∫ t

0
L(q, q̇, t)dt

=
∫ t

0

1
2
(q̇2

1 + q̇2
2 +(q2

1 +q2
2)q̇

2
3 +2(q2

1−q2
2)q̇3q̇4 +(q2

1 +q2
2)q̇

2
4)

− K1q2
1q2

2

sin2(2q3)
− K2

2
(

1
q2

1
+

1
q2

2
)dt. (21)

To solve for the trajectories of the agents, we first calculate
the general momenta p = ∂L

∂ q̇ as

p1 = q̇1,

p2 = q̇2,

p3 = (q2
1 +q2

2)q̇3 +(q2
1−q2

2)q̇4,

p4 = (q2
1 +q2

2)q̇4 +(q2
1−q2

2)q̇3, (22)

which yields the Legendre transform q̇ = h(q,p, t),

q̇1 = p1,

q̇2 = p2,

q̇3 =
(q2

1 +q2
2)p3− (q2

1−q2
2)p4

4q2
1q2

2
,

q̇4 =
(q2

1 +q2
2)p4− (q2

1−q2
2)p3

4q2
1q2

2
. (23)

Then, according to Equation (17), the Hamiltonian is

H(q,p, t) =
1
2
(p2

1 + p2
2 +

(p3 + p4)
2

4q2
1

+
(p3− p4)

2

4q2
2

)

+
K1q2

1q2
2

sin2(2q3)
+

K2

2
(

1
q2

1
+

1
q2

2
). (24)

Therefore, ṗ =− ∂H
∂q can be calculated as

ṗ1 =
1

4q3
1
(p3 + p4)

2 +
K2

q3
1
− 2K1q1q2

2

sin2(2q3)
,

ṗ2 =
1

4q3
2
(p3− p4)

2 +
K2

q3
2
− 2K1q2

1q2

sin2(2q3)
,

ṗ3 =
4K1q2

1q2
2 cos(2q3)

sin3(2q3)
,

ṗ4 = 0. (25)

The optimal trajectories are the solution of Equations (23)
and (25) with given initial conditions q(t0) and p(t0).

We observe from Equation (25) that p4 = C, in which C
is a constant. Then, the number of differential equations in
(23) and (25) can be reduced from 8 to 6, that is,

q̇1 = p1,

q̇2 = p2,

q̇3 =
(q2

1 +q2
2)p3− (q2

1−q2
2)C

4q2
1q2

2
,

ṗ1 =
1

4q3
1
(p3 +C)2 +

K2

q3
1
− 2K1q1q2

2

sin2(2q3)
,

ṗ2 =
1

4q3
2
(p3−C)2 +

K2

q3
2
− 2K1q2

1q2

sin2(2q3)
,

ṗ3 =
4K1q2

1q2
2 cos(2q3)

sin3(2q3)
. (26)

Note that q4 can be obtained by the integration of

q̇4 =
(q2

1 +q2
2)C− (q2

1−q2
2)p3

4q2
1q2

2
, (27)

after the numerical integration of the previous six differential
equations is done. The reduction in the number of equations
demonstrates a benefit of using shape variables (d1,d2,γ)
and φ instead of (d1,d2,θ1,θ2).

Since the total energy of the system is conserved, the
resulting trajectories depend on the initial conditions of the
above differential equations and the speed of the agents are
constrained by the initial energy of the system. In addition,
p4 = 1

2 (θ1 + θ2) = C represents the conserved angular mo-
mentum of the two agents. If C = 0, no rotation occurs in
the two-agent system around the target. If C 6= 0, the two-
agent system rotates around the target with a constant angular
velocity.

The equilibrium of the reduced Hamilton equations (26)
can be calculated by letting q̇ = 0 and ṗ = 0. When C =
0, the equilibrium of (26) is p1 = p2 = p3 = 0, q1 = q2 =

( K2
2K1

)
1
6 , and q3 = k

4 π , in which k is an odd integer. When
C 6= 0, we calculate that the equilibrium is p1 = p2 = 0,
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q3 =
k
4 π , in which k is an odd integer, p3 =

(q2
1−q2

2)C
q2

1+q2
2

, and q1

and q2 satisfy C2q4
1−2K1q4

1q2
2(q

2
1 +q2

2)
2 +K2(q2

1 +q2
2)

2 = 0
and C2q4

2−2K1q2
1q4

2(q
2
1 +q2

2)
2 +K2(q2

1 +q2
2)

2 = 0.
Next, let’s check the stability of the equilibrium of the

system (26). Represent the dynamic equations (26) as ẋ =
f (x), in which x1 = q1,x2 = q2,x3 = q3,x4 = p1,x5 = p2, and
x6 = p3. Let x0 represent the equilibrium. Then, linearizing
the system (26), we calculate that

A =
∂ f (x)

∂x

=



0 0
0 0

− x6−C
2x3

1
− x6−C

2x3
2

− 3(x6+C)2

4x4
1
− 3K2

x4
1
− 2K1x2

2
sin2(2x3)

− 4K1x1x2
sin(4x3)

− 4K1x1x2
sin(4x3)

− 3(x6−C)2

4x4
2
− 3K2

x4
2
− 2K1x2

1
sin2(2x3)

8K1x1x2
2 cos(2x3)

sin3(2x3)

8K1x2
1x2 cos(2x3)

sin3(2x3)

0 1 0 0
0 0 1 0
0 0 0 1

4 (
1
x2

2
+ 1

x2
1
)

8K1x1x2
2 cos(2x3)

sin3(2x3)
0 0 (x6+C)

2x3
1

8K1x2
1x2 cos(2x3)

sin3(2x3)
0 0 (x6−C)

2x3
2

−8K1x2
1x2

2(
1+2cos2(2x3)

sin4(2x3)
) 0 0 0


. (28)

When C = 0, at x = x0, i.e., x1 = x2 = ( K2
2K1

)
1
6 , x3 =

k
4 π ,

in which k is an odd integer, and x4 = x5 = x6 = 0, we have

A =
∂ f (x0)

∂x

=



0 0
0 0
0 0

−3K2(
2K1
K2

)
2
3 −2K1(

K2
2K1

)
1
3 −4K1(

K2
2K1

)
1
3

−4K1(
K2
2K1

)
1
3 −3K2(

2K1
K2

)
2
3 −2K1(

K2
2K1

)
1
3

0 0
0 1 0 0
0 0 1 0
0 0 0 1

2 (
2K1
K2

)
1
3

0 0 0 0
0 0 0 0

−8K1(
K2
2K1

)
2
3 0 0 0


. (29)

Solve for the eigenvalues of A by letting det(A− λ I) = 0.
We calculate the eigenvalues of matrix A as
(
√

2(4K2
1 K2)1/3i,−

√
2(4K2

1 K2)1/3i,(4K2
1 K2)

1/3
√
−( 2K1

K2
)1/3i,

−(4K2
1 K2)

1/3
√
−( 2K1

K2
)1/3i),

√
6(4K2

1 K2)1/3i,−
√

6(4K2
1 K2)1/3i).

The eigenvalues of A are in the imaginary axis. Then, the
equilibriums of the system are stable. At the equilibrium,
since q̇ = 0, the kinetic energy E(q, q̇) = 0. The total energy
of the system is determined by the potential energy V (q),
which is calculated as V (q) = K1

q4
1
+K2q2

1.

V. SIMULATION RESULTS

We simulate the trajectories of two sensing agents lo-
calizing one stationary target by integrating the differential
equations (26) given different initial conditions. The target
is located at (0,0).

Choose K1 = 1, K2 = 2. From q1 = q2 = ( K2
2K1

)
1
6 , we

calculate that, when C = 0, the equilibrium is q1(0) =
q2(0) = 5, q3(0) = kπ

4 , in which k is an odd integer, and
p1(0) = p2(0) = p3(0) = 0. If we let the agents start from the
equilibrium, then, the two agents will stay stationary as t→∞

since there is no initial kinetic energy. The total energy of
the system is determined by V (q(0)) = K1q4

1(0)+
K2

q2
1(0)

= 3.

Next, let’s set q1(0) = q2(0) = 1, q3(0) = π

6 , p1(0) =
p2(0) = p3(0) = 0, and the integration time T = 3s. Similar
to the previous case, the initial kinetic energy E = 0 and
the total energy H =V +E =

K1q4
1(0)

sin2(2q3(0))
+ K2

q2
1(0)

= 10
3 . Fig. 2

shows the trajectories of two agents localizing the target.
The target is located at (0,0) illustrated by the magenta
dot. The two black dots indicate the starting positions of
the two agents. Fig. 3 illustrates the potential energy, kinetic
energy, the determinant of FIM, and the Hamiltonian of the
system using the blue dotted line, red dashed line, green
solid line, and magenta dash-dot line, respectively. From the
two figures, we observe that, since the agents are not starting
from the equilibrium (q3(0) 6= π

4 ), they do not stay stationary.
When they accelerate, the kinetic energy increases, and
the potential energy decreases. When the potential energy
reaches its minimum value Vmin = 3, the kinetic energy
reaches its maximum value Emax =

1
3 , implying the maximum

value of the determinant of FIM. In the meantime, the total
energy H remains a constant. This observation agrees with
the argument that as more energy is spent, more information
is expected to be obtained.

Fig. 2. Trajectories of two agents with the initial condition q1(0) = q2(0) =
1, q3(0) = π

6 , p1(0) = p2(0) = p3(0) = 0, C = 0, and T = 3.

If we perform the simulation for a longer time interval, for
example, T = 10 instead of T = 3, the agents just move along
the same trajectories back and forth in a similar pattern that
they accelerate with increasing information, and decelerate
with decreasing information. Their motions are constrained
by the initial energy of the system. The simulation results
demonstrate a tradeoff between information and energy.
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Fig. 3. The kinetic energy, potential energy, determinant of FIM, and
Hamiltonian of the tracking system with the initial condition q1(0) =
q2(0) = 1, q3(0) = π

6 , p1(0) = p2(0) = p3(0) = 0, C = 0, and T = 3.

Fig. 4 illustrates the trajectories when q1(0) = q2(0) = 1,
q3(0) = π

4 , p1(0) = p2(0) = p3(0) = 0, and T = 3. In this
case, we set C = 1 instead of C = 0. We observe that
the two-agent system move around the target with fixed
angular velocities determined by C. Since we let the angular
momentum C be positive, the equilibrium is replaced by a
limit cycle, to which the motion of the two agents converge.
As we can see, the trajectories of the agents depend on a
substantial way on initial conditions, which is well-known
in classical mechanics.

Fig. 4. The trajectories of the two agents with the initial condition q1(0) =
q2(0) = 1, q3(0) = π

4 , p1(0) = p2(0) = p3(0) = 0, C = 1, and T = 3.

VI. CONCLUSIONS AND FUTURE WORK

Inspired by study in behavioral ecology, this paper initiates
an exploration of the tradeoffs between energy and informa-
tion of mobile agents localizing a target. The determinant of
FIM, which is considered as part of potential energy from
the insights of classic mechanics, is chosen to represent the
quality of information. With the objective of minimizing the
difference between the agents’ kinetic energy and potential
energy, we define an optimal path problem, the resulting
trajectories of which satisfy Euler-Lagrange equations, or
the Hamilton equations. We evaluate the equilibriums of
the resulting dynamic system and demonstrate that the e-
quilibriums are stable. Simulation results with various initial
conditions agree with theoretical predictions. Future work
includes an extension to tracking a moving target and the
incorporation of the state estimation of the target using
techniques such as extended Kalman filter and particle filter.
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